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Abstract. A procedure for applications of the pseudospin transformation within the framework
of nuclear oscillator shell model is developed. It is valid for operators expressed in terms of
single-particle variables and is based on permutation rules for special rotational invariants. The
procedure is applied to a number of physical operators including several rotational scalars,
the spin and orbital momenta, and the quadrupole moment. An algorithm for generating an
approximation to the pseudospin transformation, which gives a simple and accurate expression
for dominant parts of required transforms, is also given. The algebras associated with pseudospin
transformations are discussed.

1. Introduction

A promising advance relating to the development of a shell-model theory for heavy nuclei
is the pseudospin (more precisely, pseudo space-spin) concept [1, 2]. It simplifies nuclear
structure calculations considerably by re-assigning the orbital and spin momenta in such
a way as to effectively reduce the strength of the spin–orbit coupling in the single-
particle Hamiltonian. In combination with Elliott’s many-particleSU(3) approach [3], and
especially itsSp(6, R) extension (see reviews [4, 5] and references therein) which looks after
the monopole and quadrupole modes, it has developed into a powerful tool for microscopic
studies of collective phenomena in strongly deformed nuclei [6–8].

The transformation from the normal representation to the pseudo space-spin representa-
tion, usually abbreviated as thenormal→ pseudotransformation, is conventionally defined
within the framework of the harmonic oscillator shell model. It can be viewed simply as
being a scheme for relabelling the single-nucleon components of the oscillator shell-model
states associated with the normal parity subspace [9]. Although this interpretation is too
restrictive to be directly applicable in realistic mean-field and many-particle descriptions
of nuclei, which require instead the helicity transformation [10], it is of primary impor-
tance because of the key role played by the oscillator shell model in microscopic nuclear
calculations.

An alternative interpretation for the normal→ pseudo transformation in terms of the
single-particle coordinates, momenta and spins variables has been suggested [11]. From an
algebraic perspective, this new realization is a supersymmetric operation as it is constructed
out of the rotational scalars which form the symplectic superalgebraosp(1|2) [12].

The relabelling of single-particle states, which up until recently was the exclusive tool for
effecting the normal→ pseudo transformation, is a working procedure that is well suited to
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numerical calculation with a given model space. From the standpoint of operators, however,
it only yields simple results for actions defined on single-particle basis states. For example,
the relabelling procedure is very simple when applied to the pairing interaction which creates
and annihilates pairs in time-reversed nucleon states [13]. However, the majority of physical
operators, including the kinetic energy, internucleon potentials, electromagnetic transitions,
and so on, are most easily expressed in terms of the variablesr, p ands. For these forms
the relabelling can only be effected in terms of a second quantized representation which
must be done numerically for every major shell by means of the symmetry-adapted tensorial
expansion and this, in turn, complicates the interpretation of the result [6].

In this paper the analytical form of the normal→ pseudo transformation is used in
constructing a procedure for finding images of operators that have an explicit dependence
on single-particle variables. This procedure constitutes a basis for developing an analytical
formalism and carrying out calculations within any microscopic theory using the pseudo
space-spin concept, especially the pseudo-SU(3) and pseudo-Sp(6, R) theories. The
analytical results are valid for any oscillator shell. The transformation of several important
operators, including the spin and quadrupole moment, is discussed in detail. The images that
are obtained are compared with tensorial expansions derived using the relabelling algorithm.
A heuristic technique is developed to deduce simple approximations to the normal→ pseudo
images which extract the dominant parts in a simple and accurate manner.

2. Normal → pseudo transformation

For the system ofA nucleons the normal→ pseudo transformation can be written in a
multiplicative form [11]

Utotal =
A∏
i=1

U(ri ,pi ,σi ) (1)

where theri stand for the position vectors,pi for the momentum, andσi = 2si for the
Pauli spin operators of the individual particles. The corresponding single-particle operators
U(r,p,σ) can be represented as follows [11, 12]:

U(r,p,σ) = d (d+d)−1/2 (2)

d = b · σ d+ = b+ · σ (3)

whereb = (r/r0 + i r0 p)/
√

2, b+ = (r/r0 − i r0 p)/
√

2 are the annihilation and creation
operators, respectively, andr0 = √

h̄/mω is the characteristic oscillator length. There exists
another representation [14] for the single-particle transformation operator

U(r,p,σ) = (d d+)−1/2 d (4)

which can be obtained from (2) by applying the identity

d f (d+d) = f (d d+) d .

The latter identity requires associative property for the operatorsd andd+ for its proof, and
holds for any analytic functionf (x) which is expandable in a power series.

The transformation operator, as given by (2) and (4), acts on the harmonic oscillator
eigenstates

ψnljm = ilRnl(r)(Yl ⊗ χ)jm (5)

in the following manner [9, 11]:

U(r,p,σ) ψnljm = ψñl̃jm (6)
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where n is the number of quanta,j is the angular momentum,l andm are the orbital
momentum and its projection,Yl is a spherical harmonic, andχ is a Pauli spinor. The
‘pseudo’ values ofn and l are determined by the rules

ñ = n− 1 l̃ = l ± 1 if j = l ± 1
2 . (7)

The normal→ pseudo transformation is rotationally invariant and unitary. Rotational
invariance follows from the fact that the angular momentumj = l+s commutes with thed
andd+ operators. Unitarity holds within the subspace of normal parity orbitals only, that is,
within the space spanned by the set of states of a major shell less the one with(j = n+ 1

2).
The unique parity orbitals, which either defect out of the model space(j = n + 1

2) or
intrude into it from the shell above(j = n+ 3

2) due to the spin–orbit interaction, have no
pseudo counterparts because they are annihilated by thed operator (cf theRHS of (4)). For
instance, thes1/2, d3/2, d5/2 and g7/2 orbitals of then = 4 shell map onto thẽp1/2, p̃3/2,
f̃5/2 and f̃7/2 orbitals of theñ = 3 shell, respectively, while theg9/2 orbital has no pseudo
image. The unitarity can be checked by comparing (2) and (4) with the condition

U U+ = U+U = 1 . (8)

For the sake of notational simplicity the arguments of the transformation operator are omitted
in what follows.

3. Permutation relations

The definitions (2) and (4) clearly indicate that the rotational invariants (3) are the simplest
building blocks of the normal→ pseudo transformation operator. As shown in [12], these
two operators are also the odd generators of theosp(1|2) superalgebra. When combined
with the bilinear forms ofd andd+, namely

d2 = b · b

h0 = 1
2(d d

+ + d+d) = n̂+ 3
2

(d+)2 = b+ · b+
(9)

they form an algebra closed with respect to commutation and anticommutation operations
(see [12, equations (3.1) and (4.3)] for the relations connecting theosp(1|2) generators).
The symboln̂ is used henceforth for denoting the number of quanta operator.

Since the operators (3) and (9) are related through both commutations and
anticommutation, they should also be involved in general permutation relations. Indeed,
by using the well known rule

(α · σ)(β · σ) = (α · σ)+ i σ · (α×β) (10)

and the standard commutation relations forb andb+, it is easy to see that

(b · σ)(l · σ) = −(l · σ + 2)(b · σ)

(b · σ) n̂ = (n̂+ 1)(b · σ) . (11)

Here l = i b×b+ is the orbital angular momentum. An iterative use of (11) leads to the
permutation rule

(b · σ) g(n̂, l · σ) = g(n̂+ 1,−l · σ − 2) (b · σ) (12)

which is valid for operator-valued functions of the two variables. The operatorsn andl · σ
naturally appear in this expression because they are simple linear combinations ofd d+ and
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d+d (see equations (2), (4), (16) and (17)). A similar formula can be given for thed+

operator:

(b+ · σ) g(n̂, l · σ) = g(n̂− 1,−l · σ − 2) (b+ · σ). (13)

Note that equations (12) and (13) can be folded into the same relation

(b± · σ) g(n̂, l · σ) = g(n̂∓ 1,−l · σ − 2) (b± · σ) (14)

providedb− stands forb.
The permutation rule (14) is a cornerstone of the procedure for developing analytical

results for pseudo transforms. It is of primary use for transforming monopole operators, that
is, operators that are rotational scalars. In the case of higher multipolarity operators there are
more complex rules which are not reducible to permutations alone. The rules are different
for different operators, but generally, the degree of complexity increases rapidly with the
multipolarity of the operator. For instance, the rule for transposing the spin operator with
an analytic function of thel · σ operator goes as follows:

σf (l · σ) = f (−l · σ − 1)σ + f (l · σ)− f (−l · σ − 1)

l · σ + 1
2

j (15)

where the symbolic operator-valued fraction is used because the numerator and denominator
do commute. This formula is derived in the appendix and will be used in section 6 where
the image of the spin operator is given.

4. Double transformation

A simple, although rather interesting, application of equation (12) is a derivation of an
analytic expression for the twofold normal→ pseudo transformation. An important property
of the double transformation is that it actually depends only on the orbital degrees of
freedom. This property will prove useful for finding the transform of the spin operator (see
section 6).

To obtain the double transformation result, note that

d+d = n̂− l · σ (16)

d d+ = n̂+ l · σ + 3 (17)

and rewrite the single transformation (see equations (2) and (4)) in the form [11]

U = (b · σ) (n̂− l · σ)−1/2 (18)

or, equivalently [14],

U = (n̂+ l · σ + 3)−1/2 (b · σ) . (19)

Note that equation (12) provides an additional and direct proof of the identity between the
operators (18) and (19) acting in the normal parity subspace.

The double transformation can now formally be defined as a product of two single
transformations. For instance, equation (19) yields

U2 = (n̂+ l · σ + 3)−1/2 (b · σ) (n̂+ l · σ + 3)−1/2 (b · σ) .

By applying (12), theb · σ operator can be moved to the right resulting in

U2 = (
(n̂+ 2)(n̂+ 3)− l2

)−1/2
b2 . (20)



Pseudospin transformation of physical operators 2043

To arrive at (20), the identities

(l · σ)2 = l2 − l · σ (21)

(b · σ)2 = b2 (22)

were used along with the fact that then and l · σ operators commute. Since

(n̂+ 2)(n̂+ 3)− l2 = b2(b+)2

Equation (20) can be rewritten as

U2 = (
b2(b+)2

)−1/2
b2 . (23)

Thus, the double normal→ pseudo transformation is reduced to an action of theb2 operator
with a subsequent normalization (cf equation (6)):

U2ψnljm = ψn−2,ljm . (24)

From an algebraic viewpoint, this transformation can be expressed in terms of the
enveloping algebra of the non-compact symplectic algebrasp(2, R) which is a subalgebra
of osp(1|2). The three generators ofsp(2, R) are defined in (9). It is important to note,
however, that while thesp(2, R) algebra that emerges is related to thesp(2, R) subalgebra
of the nuclear collective motion algebra ofsp(6, R) [4, 5], in general these two algebras
only coincide at the single-particle level. In the many-particle case the generators of the
collective sp(2, R) algebra include a summation over single-particle operators (9). In the
pseudospin-related problems only single-particle operators are considered; for instance, the
many-particle double transformation is just a product of single-particle transformations (23).
This product structure ofU2

total is an indication of thenon-collectivenature of the pseudospin
transformation.

Note that in contrast to the single transformation, the double form changes neither the
orbital momentum nor parity—it is anO(3) scalar operator. As a result, the spin is also
invariant with respect to the double transformation. In short, the double transformation
carries then of the oscillator inton− 2 while leaving bothl ands unchanged.

The technique used for deriving (20) and (23) can be used to produce another form of
the double transformation operator

U2 = b2
(
n̂(n̂+ 1)− l2

)−1/2

= b2
(
(b+)2b2

)−1/2
. (25)

Which form is used in an application is simply a matter of convenience so long as
consideration is confined to normal parity subspace.

5. One-body rotational invariants

One-body rotationally invariant operators naturally emerge in microscopic, shell-model
based approaches to nuclear structure. For pseudospin-related problems thed, d+ operators
and the single-nucleon Hamiltonian are the characteristic rotational scalars. The normal→
pseudo transforms of these operators are derived in this section.

Analytic results for the transformedd andd+ operators, which are an integral part of
the normal→ pseudo transformation itself, follow from the definition of a transformed
operator,

F ′ = UFU+ (26)



2044 A L Blokhin et al

whereF ′ is the transform ofF . For theF = d = b · σ case it is convenient to utilize (19)
for U and the Hermitian conjugate of (18) forU+. Applying equation (17) to this result
yields

Ub · σU+ =
(
n̂− l · σ + 2

n̂+ l · σ + 3

)1/2

b · σ . (27)

The transform ofd+ = b+ ·σ is given by the Hermitian conjugate of (27). For convenience
of having the normalization factor on the left, the rule (13) can be applied to obtain the
result

Ub+ · σU+ =
(
n̂+ l · σ + 3

n̂− l · σ

)1/2

b+ · σ . (28)

Given the transformation properties ofd and d+, it becomes easy to transform the
single-nucleon Hamiltonian for the oscillator shell model (in units of ¯hω)

H = h0 − k
(
l · σ + µ(l2 − 〈l2〉n)

)
(29)

whereh0 is the oscillator energy operator (see equation (9)) and〈l2〉n = 1
2n(n + 3) is the

mean value ofl2 within the nth shell. The〈l2〉n term is subtracted froml2 to ensure that
the average value of the single-nucleon Hamiltonian remains fixed byh0 [15].

The transformation of the oscillator energy is obvious:

Uh0U
+ = h0 + 1 (30)

becauseU reduces the number of oscillator quanta by 1. To understand how the spin–orbit
term transforms, recall relations (16) and (17). Since the transforms ford, d+ andh0 are
known, it is easy to show that

U l · σU+ = −l · σ − 2 . (31)

And finally, by making use of (21), the transform ofl2 can be determined:

U l2U+ = l2 + 2l · σ + 2 . (32)

Sinceσ2 has a unique eigenvalue it is invariant under the normal→ pseudo transformation,
and furthermore, equations (31) and (32) provide proof for the invariance ofj2 =
l2 + l · σ + 1

4σ2. The latter result is simply a consequence of the rotational invariance
of the normal→ pseudo transformation itself.

By combining the results of equations (30)–(32), the transformation of the Hamitonian
(29) can be given as

UHU+ = h0 + 1 − k
(
(2µ− 1)l · σ + µ(l2 − 〈l2〉n)

) + k
(
µ(h0 − 3

2)+ 2
)
. (33)

This expression for the transformed Hamiltonian coincides with the corresponding formula
in [11], with the exception of the〈l2〉n term and its transform which were not considered
in the earlier pseudospin studies. (Note that the inclusion of the〈l2〉n term in the
original Hamiltonian induces a slight change in the oscillator frequency of the transformed
Hamiltonian because the value ofkµ is about 0.02–0.04 for heavy nuclei.) Also, there
is no easy way to apply the commutator technique employed in [11] to operators whose
transforms have a more complicated form, for example equations (27) and (28), as well as
many other operators of physical significance. The techniques based on the rule (14) and
its generalizations are applicable in all cases.

The expressions derived so far are sufficient for calculating the transforms for any
polynomial (or more complex) functions of thed andd+ operators. Important examples of
this kind are the bilinear combinationsd2 = b2 and(d+)2 = (b+)2 which together with the
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n operator generate thesp(2, R) algebra (see the comment following (9)). Their transforms
can be found by squaring both sides of (27) and (28) and applying rule (14):

Ub2U+ =
(
n̂+ l · σ + 5

n̂+ l · σ + 3

)1/2

b2 (34)

U(b+)2U+ =
(
n̂+ l · σ + 3

n̂+ l · σ + 1

)1/2

(b+)2 . (35)

An obvious application of the above results is a calculation of the transform of the monopole
transition operatorr2 which is a linear combination of the three symplectic generators (9).

6. Spin and quadrupole moment operators

While rotational scalars transform in a rather simple manner, the transformation of the higher
multipolarity operators requires a more advanced prescription. Below, such a transformation
is developed for the spin and Elliott quadrupole operator (the latter is that part of the
quadrupole moment operator which conserves the number of oscillator quanta). These
operators are important for applications because their matrix elements enter into expressions
for moments and transition rates. The transformation for the orbital momentum is also found
since the total angular momentumj is known to be invariant under the normal→ pseudo
transformation.

By using the definition (18), the image of the spin operator can be written in the form

UσU+ = (b · σ)(n̂− l · σ)−1/2σ(n̂− l · σ)−1/2(b+ · σ) . (36)

Now recall (15) to discover that

(n̂− l · σ)−1/2σ(n̂− l · σ)−1/2 = [
(n̂+ l · σ + 1)(n̂− l · σ)

]−1/2
σ

+ (n̂− l · σ)−1 − [(n̂+ l · σ + 1)(n̂− l · σ)]−1/2

l · σ + 1
2

j . (37)

By inserting theRHS of the latter expression in theRHS of (36) and applying the permutation
rule, the following expression for the transformed spin operator is obtained:

UσU+ =
(b · σ)σ(b+ · σ)+ 2

[
1 +

(
n̂− l · σ

n̂+ l · σ + 3

)1/2
]−1

j[
(n̂+ l · σ + 3)(n̂− l · σ)

]1/2 . (38)

The use of symbolic division in this formula is justified because the operators that enter
into both the numerator and denominator factors commute with one another. The fact that
the (b · σ)σ(b+ · σ) operator commutes with the denominator follows as a particular case
from a generic identity:

[(b · σ)σ(b+ · σ), G(n̂, l2 + l · σ + 2)] = 0 (39)

which is valid for an operator-valued analytical functionG(x, y) of the two variables. This
result follows from the fact that

[σ, G(n̂, l2)] = 0 (40)

by applying the operatorsb · σ andb+ · σ on the left and right, respectively.
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Equation (38) is one of several equivalent forms for the transformed spin operator. The
equality

U+σU =
(b+ · σ)σ(b · σ)− 2

[
1 +

(
n̂+ l · σ + 3

n̂− l · σ

)1/2
]−1

j[
(n̂+ l · σ + 3)(n̂− l · σ)

]1/2 (41)

which can be derived in a similar manner, is another form for the same expression because
of the invariance of the spin under the double normal→ pseudo transformation. By taking
an average of theRHS of (38) and (41) and using the identity

(b · σ)σi(b
+ · σ)+ (b+ · σ)σi(b · σ) = 4qijσ

j − 2
3(n̂+ 3

2)σi (42)

where a summation over repeated indices is implied and

qij = 1
2(bib

+
j + bjb

+
i )− 1

3(n̂+ 3)δij (43)

are the Cartesian components of the Elliott quadrupole tensor, the transform of the spin
operator can be re-expressed in terms of the spin, orbital momentum and quadrupole single-
particle operators alone:

UσU+ = [(n̂+ l · σ + 3)(n̂− l · σ)]−1/2

×
(

2(q ⊗ σ)(1) − 1
3(n̂+ 3

2)σ + 3j[
(n̂+ l · σ + 3)1/2 + (n̂− l · σ)1/2

]2

)
.

(44)

In this expression(q ⊗ σ)i ≡ qijσ
j . Although the resulting expression looks more

complicated than any of the monopole operator transforms discussed in the previous section,
evaluation of the corresponding matrix elements poses no problem in the spherical oscillator
single-particle basis.

Proceeding to a derivation of the transform of the Elliott quadrupole tensor, it is
convenient to start from the definition

UqU+ = (n̂+ l · σ + 3)−1/2(b · σ)q(b+ · σ)(n̂+ l · σ + 3)−1/2 . (45)

By utilizing equations (43) and (17), the boson commutation relations, and the definition of
the orbital momentum, it is possible to prove the identity

(b · σ)qij (b
+ · σ) = 1

2

{
qij (n̂+ l · σ + 4)+ (n̂+ l · σ + 4)qij + 1

3l · σδij − 1
2(liσj + lj σi)

}
(46)

and rewrite the previous equation as follows:

UqU+ = 1
2(n̂+ l · σ + 3)−1/2{q(n̂+ l · σ + 4)+ (n̂+ l · σ + 4)q − (l ⊗ σ)(2)}

×(n̂+ l · σ + 3)−1/2 (47)

where(l⊗σ)(2)ij = 1
3(liσj + lj σi − (l ·σ)δij ) stands for the spherical tensor of rank 2 formed

out of the orbital and spin momenta. Rewriting equation (47) as a fraction of commuting
operators as was done for (38) and (41) does not result in any obvious advantage, as
the resulting expression is neither transparent nor particularly convenient for applications.
Moreover, as will be discussed in section 7, the present form is well suitable for an analysis
which reveals the principal components of the tensorial structure of its image and which
can easily be generalized in the many-particle case.
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7. Approximate pseudospin transforms

A comparison of the results of sections 5 and 6 confirms that the normal→ pseudo
transforms of higher multipolarity operator forms are more complicated than those for
monopole operators. This is especially true for Hermitian forms that conserve the total
number of oscillator quanta.

It is interesting to juxtapose the analytical results from the above for the single-particle
case with many-particleSU(3)-tensorial expansions for multipole operators determined
numerically using the relabelling procedure referred to above together with standard group-
theoretical coupling techniques [6]. The results show that the dominant parts of these
seemingly complex operators have a relatively simple structure that in each case is very
close to the structure of the original operator. For example, the transformed spin operator
has the analytical form

UtotalSU
+
total = − 1

3S +
( A∑
i=1

λ(l=2)
i ⊗ si

)(J=1)

(48)

whereλ(l=2) is an orbital operator of the quadrupole type. TheSU(3) tensorial expansion
of the λ operator, obtained in [6], consists of a leading term proportional to the Elliott
quadrupole operator with the rest of the series not reducible toSU(3) generators but adding
up to a very small part of the total value of the calculated matrix elements. The coefficients
in this expansion are oscillator-shell dependent. (A further transformation of (44) also yields
(48), although in a tedious and non-transparent way.)

For the Elliott quadrupole tensor as well as for the spherical rank-0 and rank-2 tensors
which areSp(6, R) generators that increase/decrease the number of oscillator quanta by
two, the transformation rule is even simpler:

UtotalFU
+
total = κFF + · · · (49)

where the dots represent otherSU(3) tensors that have expansion coefficients which are less
than ten percent of the leading term and tend effectively to cancel on average so as to yield
less than one percent change in calculated transition rates [16, 17]. The coefficientsκ are
usually operator and shell dependent with the latter dependence decreasing monotonically
towards unity with increasing shell number.

Given the simple form for the leading term in these expansions, it seems reasonable to
expect that the analytical techniques developed for the single-particle case should lead to an
easy way of predicting the structure of the dominant parts of a transformed operator as well
as a prescription for evaluating the corresponding expansion coefficients. An approximate
method for doing this is proposed below; however, caution is advised as there is no simple
method short of a full calculation for giving an estimate for errors that might be associated
with the use of such approximations.

The procedure is based on the following observation. In general, for a given single-
particle operatorF there exists several different pairs of operatorsF̆ andG satisfying the
identity

dFd+ = 1
2(dd

+F̆ + F̆ dd+)+G (50)

with d and d+ defined in (3). Different choices for̆F andG are possible because the
operatorF may be encountered not only in commutation relations withd andd+ but also
in the anticommutation and generic permutation relations (see section 3). WhileF̆ usually
has a tensorial structure similar toF , the structure of the residual termG is dependent upon
the choice of the permutation relation that is used in the derivation. In what follows, the
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choice that renders the structure ofG as simple as possible is made, namely, that choice
which involves a minimum number ofSU(3) tensor operators.

The transformed operator can be written in the form

UFU+ = 1
2

(
(dd+)1/2F̆ (dd+)−1/2 + (dd+)−1/2F̆ (dd+)1/2

)
+ (dd+)−1/2G(dd+)−1/2 .

(51)

Note that within a given oscillator shell the(dd+)−1/2 = (n̂+ l · σ + 3)−1/2 factor, as well
as its inverse, is a positive definite, monotonic, and slowly changing function of thel · σ
operator, especially for higher shells. Since the pseudospin symmetry is relevant for heavy
nuclei and high single-particle orbitals, it is not unreasonable to approximate theRHS of
(51) by taking average values within the shell for both factors, and these in turn can be
estimated by settingl · σ → 0 (or in a better way if possible).

It is important to recall, however, that average values of the single-particle angular
momenta and quadrupole moments within a given major shell correlate with the shell
number. So while a formal expansion in powers ofl·σ, which is the basis of the subsequent
consideration, apparently is asymptotic, the result remains approximate and should be used
with appropriate caution.

The 1
2

(
(dd+)1/2F̆ (dd+)−1/2 + (dd+)−1/2F̆ (dd+)1/2

)
operator of (51) can be

approximated byF̆ . This is appropriate because the two operators behave similarly
under Hermitian conjugation, have the same traces in any subspace of single-particle
states, and their difference can only be of the order of O(n−2). The latter estimate
is valid because of the absence of a linearl · σ term in the MacLaurin series for
1
2

(
(dd+)1/2F̆ (dd+)−1/2 + (dd+)−1/2F̆ (dd+)1/2

)
. For the residual(dd+)−1/2G(dd+)−1/2

term the estimateβF (n̂ + 3)−1G is acceptable withβF an adjustable parameter that is
close to unity. This parameter accounts for higher-order corrections due to averaging and
renormalization and can be evaluated directly or by comparison with known results.

These considerations lead to the following approximation:

UFU+ = F̆ + βF

n̂+ 3
G+ O(n−2) (52)

for the transform of the operatorF . The accuracy of this approximation is expected to
increase with increasing shell number. Obviously, such an approximation is not unique,
and there is always a chance to improve it by using a more sophisticated initial expression.
For instance, as will be demonstrated below, equation (44) allows for immediate averaging
without any preliminary transformation.

As examples, three cases from the previous sections, namely the transformation of the
l · σ, σ and q operators, will now be considered. The result forF = l · σ is particularly
simple because in this casĕF = −(l · σ + 2) andG = 0 by virtue of (11), (12) or (13).
In this case the exact result, (31), is obtained as a consequence of the commutation of the
dd+ and F̆ operators.

For F = σ there is no need to apply the generic scheme based on (50) because it is
more convenient to average the values of the slowly changing coefficients in theRHS of
(44). If accuracy is maintained toO(n−2), the approximate transform for the spin operator
s = σ/2 has the form

UsU+ = −1

3
s + 2βs

n̂+ 3
2

(q ⊗ s)(1) + · · · (53)

which can be compared directly with its many-particle generalization (48). This shows
that the coefficient of the spin operator is exact, and the SO(3) tensorial structure is
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represented correctly. Moreover, as mentioned above, theSU(3) tensorial expansion for
λ(l=2), found in [6], shows that the dominant term has the transformation properties of the
Elliott quadrupole operator. Therefore, these two approaches are in a good agreement. An
estimate for the coefficientβs from (44) is simply unity. As an alternative, equation (53)
can be raised to the second power and then if the expression were exact theRHS should be
equal to 3

4. In general, the result depends on both thel · σ and l2 operators; however, the
value ofβs = √

8/5 guarantees the correct average value fors2 within a shell. These two
estimates are very close with the differences attributable to corrections that are of the order
of n−2 and higher which are effectively taken into account in the latter estimate.

To determine the dominant part of the transform for the single-particle Elliott quadrupole
operator q, compare equation (47) with the definition (51) and note that in this caseF̆ = q
andG = q − (l ⊗ s)(2). Then, by making use of prescription (52), this can be rewritten as

UqU+ = q + βq

n̂+ 3

(
q − (l ⊗ s)(2)

) + · · · . (54)

Although there is no rigorous way to evaluateβq , the following heuristic estimate proves
to be rather precise. By comparing the corresponding terms from (47) and (54), the ratio
βq/(n̂ + 3) within the given shell can be shown to be close to the average value of the
(n̂+ l · σ + 3)−1 operator within the same shell. Using the formal expansion

n̂+ 3

n̂+ l · σ + 3
= 1 − l · σ

n̂+ 3
+ l2 − l · σ

(n̂+ 3)2
+ O(n−3) (55)

and the familiar formulae〈l · σ〉n = 0 and〈l2〉n = 1
2n(n+ 3) for the average values within

the nth oscillator shell, the following approximation is obtained:

βq ≈ 1 + n̂

2(n̂+ 3)
.

Note that the comparison of the ‘empirical’ relation (49) with (54) displays the simple
connection

κq = 1 + βq

n̂+ 3
.

To illustrate the accuracy of the result, compare the estimates forκq , calculated according
to this formula, with the exact numerical values from [16]. The relevant numbers are
1.208 versus 1.221 forn = 3, 1.184 versus 1.193 forn = 4, and 1.164 versus 1.171 for
n = 5, respectively. The difference is about one per cent and decreasing, i.e. the accuracy
is apparently higher than can be expected from the rough estimates given above.

The occurence of the residual term proportional to(l ⊗ s)(2), that is predicted by
(54), is also corroborated by the results given in [16]. Indeed, theSU(3) ⊃ SO(3)
tensorial expansion of the many-particle image ofQ contains a term with the structure
of (

∑A
i=1 li ⊗ si )

(J=2) although its influence on the E2 transition rates is weak compared to
that of the leading term.

8. Conclusion

A general prescription for generating normal→ pseudo transforms of physical operators in
the context of a spherical harmonic oscillator shell-model theory has been introduced. The
procedure applies to operators that can be expressed in terms of single-particle oscillator
boson operatorsb, b+ (or coordinatesr and momentap) and spinss, and is based on
the existence of permutation relations among the rotational invariants constructed out ofb,
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b+ ands. A simple and straightforward consequence of these permutation relations is the
existence of an analytical result for the double transformation in terms of rotational scalars
bilinear in b andb+ that form the non-compactsp(2, R) symplectic algebra.

Although the pseudospin representation has been widely used in the past, the option
of applying it in an analytical form adds a new dimension to the many-particle studies
of the structure of heavy deformed nuclei. In contrast to the general and powerful but
formal algebraic technique, using theSU(3) ⊃ SO(3) tensorial expansions plus relabelling
of the single-particle states, the procedure of analytical transformation allows to derive the
normal→ pseudo images for the operators expressed in customary physical variables.

The application of the transformation procedure to different operators yields results
of different complexity. For instance, the transforms for the number of oscillator quanta,
spin–orbit and orbit–orbit terms from the spherical Nilsson Hamiltonian are very simple
and already well known [9, 11, 18]. The transforms of other rotational scalars are slightly
more complicated. The operators of higher multipolarity tend to have images that are not
reducible to any simple or transparent form, and arriving at the exact final expressions
usually requires some creative thought.

Fortunately, for cases of real physical interest the exactness of the normal→ pseudo
transformation can be easily compromised in favour of relative simplicity. Indeed, by
using the appropriate permutation relation and averaging over slowly varying operator-
valued factors within a given oscillator shell, it is feasible to extract the leading part of
the transform which has a simple structure and accurately approximates the entire operator.
These approximations can be used to streamline applications of the theory by rendering it
no more complicated than the usual physical representation while reducing the spin–orbit
interaction in the mean-field and the space of states to the normal parity subspace only.
Representative operators for which an approximate form has proven to be advantageous
include the electromagnetic transition operators and the multipole interactions which are
highly significant for the studies of the collective phenomena in heavy nuclei.

A noteworthy aspect of the normal→ pseudo transformation is its underlying algebraical
structure. The results of sections 4–7 underscore the significance of the connection between
this transformation and the orthosymplectic supersymmetry and its subsymmetries.

Once the normal→ pseudo transformation is expressed in terms of theosp(1|2)
superalgebra [12] of the rotational invariants ofb, b+ and s, it is natural to expect that
the transforms of these rotational invariants are themselves expressible in terms of the same
superalgebra, and this fact is demontrated explicitly. The double transformation is shown
to separate the orbital and spin variables and therefore can be expressed in terms of the
sp(2, R) Lie algebra which is the subalgebra ofosp(1|2). The double transforms of the
bilinear rotational invariants (9) are, in turn, written in terms ofsp(2, R). The inclusion
of the non-scalar bilinear combinations would extend the dynamical symmetry algebra to
sp(6, R).

The normal→ pseudo transforms of the spin and orbital momenta and the Elliott
quadrupole operator are expressible in terms of these same three operators in the normal
space. Thel and q operators form the Lie algebra of the ElliottSU(3) group [3], an
important subgroup of theSp(6, R) group. Therefore, in the single-particle case the
normal → pseudo transformation produces an automorphism of the universal enveloping
algebra of theSU(3) ⊗ SU(2) group. This algebraic property is no longer exact for the
many-particle operatorsL, Q andS, which comprise the collectivesu(3)⊕ su(2) algebra.
Nevertheless, the dominant parts of the pseudospin transforms of these operators are known
to be proportional to the operators themselves. This is apparently the reason why the
corresponding operators in the many-particle pseudospace are well defined, and this in turn
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leads to the pseudo-SU(3) and pseudo-Sp(6, R) models being valid physical theories of the
collective phenomena in heavy nuclei.
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Appendix. Permutation relation for spin

The purpose of this section is to derive the permutation relation (15) for the spin operator
and an arbitrary analytic function ofl · σ.

Note that the anticommutation rule

σ(l · σ)+ (l · σ)σ = 2l

can be rewritten in the form

σ(l · σ) = −(l · σ + 1)σ + 2j . (A1)

Since thel·σ operator commutes withj, this equation can be used recursively for permuting
σ with a power function ofl · σ. Assume that a general solution for this recursion goes as
follows:

σ(l · σ)k = (−l · σ − 1)kσ + 2ξk(l · σ) j (A2)

whereξk(x) is an unknown function andξ1(x) = 1. Multiply equation (A2) byl · σ from
the right and use (A1) to arrive at the relation

ξk+1(x) = xξk(x)+ (−x − 1)k

which has a solution

ξk(x) = xk − (−x − 1)k

2x + 1
.

The latter formula provides the missing element in the permutation relation (A2) which in
turn yields (15) as a consequence of the linearity of the original expression.

It is of some interest to note that the operator-valued function

f (l · σ)− f (−l · σ − 1)

l · σ + 1
2

which occurs as a coefficient of j in (15), is in fact spin independent. To determine this
result, observe that the function is symmetric under the substitutionl · σ → −l · σ − 1.
A simple analysis shows that it actually depends only on thel · σ(l · σ + 1) combination
which is justl2 (cf equation (21)).
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